The realization space is [1 1 0 4*x1^2 - 4*x1 + 1 0 1 1 0 4*x1^2 - 4*x1 + 1 2*x1 - 1 2*x1 - 1] [1 0 1 x1^3 0 1 0 x1 - 1 x1^3 x1^2 x1^2] [0 0 0 0 1 1 1 2*x1 - 1 2*x1^3 - x1^2 x1^2 2*x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (8*x1^13 - 60*x1^12 + 150*x1^11 - 185*x1^10 + 128*x1^9 - 51*x1^8 + 11*x1^7 - x1^6) avoiding the zero loci of the polynomials RingElem[x1 - 1, x1, 2*x1 - 1, 3*x1^2 - 3*x1 + 1, x1^2 + x1 - 1, x1^2 - 3*x1 + 1, x1^3 + 2*x1^2 - 3*x1 + 1, 2*x1^2 - 2*x1 + 1, 3*x1 - 1, 3*x1^3 - 5*x1^2 + 4*x1 - 1, 3*x1 - 2]